Class III myosins shape the auditory hair bundles by limiting microvilli and stereocilia growth

نویسندگان

  • Andrea Lelli
  • Vincent Michel
  • Jacques Boutet de Monvel
  • Matteo Cortese
  • Montserrat Bosch-Grau
  • Asadollah Aghaie
  • Isabelle Perfettini
  • Typhaine Dupont
  • Paul Avan
  • Aziz El-Amraoui
  • Christine Petit
چکیده

The precise architecture of hair bundles, the arrays of mechanosensitive microvilli-like stereocilia crowning the auditory hair cells, is essential to hearing. Myosin IIIa, defective in the late-onset deafness form DFNB30, has been proposed to transport espin-1 to the tips of stereocilia, thereby promoting their elongation. We show that Myo3a(-/-)Myo3b(-/-) mice lacking myosin IIIa and myosin IIIb are profoundly deaf, whereas Myo3a-cKO Myo3b(-/-) mice lacking myosin IIIb and losing myosin IIIa postnatally have normal hearing. Myo3a(-/-)Myo3b(-/-) cochlear hair bundles display robust mechanoelectrical transduction currents with normal kinetics but show severe embryonic abnormalities whose features rapidly change. These include abnormally tall and numerous microvilli or stereocilia, ungraded stereocilia bundles, and bundle rounding and closure. Surprisingly, espin-1 is properly targeted to Myo3a(-/-)Myo3b(-/-) stereocilia tips. Our results uncover the critical role that class III myosins play redundantly in hair-bundle morphogenesis; they unexpectedly limit the elongation of stereocilia and of subsequently regressing microvilli, thus contributing to the early hair bundle shaping.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and regulation of an additional actin-filament-binding site in large isoforms of the stereocilia actin-bundling protein espin

The espin actin-bundling proteins, which are produced as isoforms of different sizes from a single gene, are required for the growth of hair cell stereocilia. We have characterized an additional actin-filament-binding site present in the extended amino-termini of large espin isoforms. Constitutively active in espin 2, the site increased the size of actin bundles formed in vitro and inhibited ac...

متن کامل

Shaky hearing

Functional sensory hair cells in the inner ear have specialised microvilli — stereocilia — which are essential for hearing. The scanning electron micrograph at top shows the normal arrangement of stereocilia bundles on three outer hair cells in the inner ear of a three-day-old mouse. The stereocilia grow to form rows of graded height in a distinctive V-shaped bundle. Recent studies in mice have...

متن کامل

Role of myosin VI in the differentiation of cochlear hair cells.

The mouse mutant Snell's waltzer (sv) has an intragenic deletion of the Myo6 gene, which encodes the unconventional myosin molecule myosin VI (K. B. Avraham et al., 1995, Nat. Genet. 11, 369-375). Snell's waltzer mutants exhibit behavioural abnormalities suggestive of an inner ear defect, including lack of responsiveness to sound, hyperactivity, head tossing, and circling. We have investigated ...

متن کامل

Twinfilin 2 regulates actin filament lengths in cochlear stereocilia.

Inner ear sensory hair cells convert mechanical stimuli into electrical signals. This conversion happens in the exquisitely mechanosensitive hair bundle that protrudes from the cell's apical surface. In mammals, cochlear hair bundles are composed of 50-100 actin-filled stereocilia, which are organized in three rows in a staircase manner. Stereocilia actin filaments are uniformly oriented with t...

متن کامل

A Biophysical Model for the Staircase Geometry of Stereocilia

Cochlear hair cell bundles, made up of 10s to 100s of individual stereocilia, are essential for hearing, and even relatively minor structural changes, due to mutations or injuries, can result in total deafness. Consistent with its specialized role, the staircase geometry (SCG) of hair cell bundles presents one of the most striking, intricate, and precise organizations of actin-based cellular sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 212  شماره 

صفحات  -

تاریخ انتشار 2016